SUBSTITUENT EFFECTS ON FLUORINE - 19 CHEMICAL SHIFTS IN BENZOBICYCLO(2.2.2)OCTEN-1-YL FLUORIDES William Adcock* and Anil N. Abeywickrema (School of Physical Sciences, The Flinders University of South Australia, Bedford Park, S.A. 5042, Australia)

<u>Summary</u>: Inverse ¹⁹F substituent chemical shifts (SCS) of <u>m</u>- and <u>p</u>-substituted benzylfluorides are shown to have their origin in hyperconjugation involving the CF σ - bond.

Although the perturbation of ¹⁹F chemical shifts of arylfluorides by the electronic effects of remote substituents is now reasonably well understood in terms of the local π -electron distribution round the fluorine nucleus¹, the corresponding situation for stereochemically well-defined alkylfluoride systems² poses a conundrum within the framework of current chemical shift theory. Thus, for most of these latter systems, but not all^{2d}, the ¹⁹F substituent chemical shifts (SCS) are in the <u>opposite</u> direction (inverse substituent dependence) to expectations based on the electron density parameter dominating the decisive paramagnetic contribution to ¹⁹F chemical shifts.

Perhaps the most dramatic exemplification of this phenomenon of inverse ^{19}F SCS are the results for substituted benzylfluorides^{2c,2i} and fluoromethylnaphthalenes^{2f-g}. Here the effect is of such a large magnitude as to encourage an investigation of its origin in the hope that this will shed some light on the dichotomous response of ^{19}F chemical shifts to substituent electronic effects in general. Thus, we present herein preliminary ^{19}F nmr data for two new stereochemically well-defined model systems (6- and 7- substituted 1-fluoro-4-methyl-1,4-ethano-1,2,3,4-tetrahydronaphthalenes, 1 and 2 respectively) which contribute significantly in this

regard. The most important feature of these new model systems is that the CF bond is constrained to the nodal plane of the adjacent aromatic π system, thus, the effect of substituent electronic perturbations on the ¹⁹F chemical shifts of benzylfluorides can be assessed in the complete absence of hyperconjugative interactions involving the CF σ -bond. The ¹⁹F SCS for 1 and 2 are shown in Table 1 together with the corresponding values for the previously reported <u>meta-and para</u>substituted benzylfluorides in order to facilitate comparisons.

A cursory examination of the data listed in Table 1 clearly indicates that for a series of substituents covering a wide range of electronic effects the ¹⁹F SCS for 1 and 2 (formally <u>para</u> and <u>meta</u> orientations respectively) are confined to a very narrow range (< 1 ppm). Note that this stands in striking contrast to the large effects observed in the corresponding benzylfluoride:

1809

	TABLE 1. ¹⁹ F SUBST	ITUENT CHEMICAL SHIFTS	(SCS) ^{a,b}
Substituent (X)	Benzobicyclo[2.2.2]o	cten-1-yl Fluorides ^{c,d}	Benzylfluorides ^e
	1	2	para meta
NO2	+ 0.69	+ 0.31	- 8.10(-8.86) ^f - 5.10(-4.68) ^g
CN	+ 0.09	- 0.20	- 7.68(-8.41) - 5.03
COCH3	+ 0.59	0.00	
COOCH	+ 0.52	+ 0.07	
F	- 0.04	+ 0.79	$+ 2.82(+2.74)^{f} - 2.82$
Cl			$-0.49(-0.74)^{f}-2.99$
Br	- 0.18	+ 0.46	- 0.98
CH3	- 0.07	+ 0.11	$+ 2.95(+3.03)^{f} + 0.44$
NH.COCH	+ 0.04	- 0.15	
NH ₂	- 0.29	+ 0.73	
OCH,			+ 7.79(+7.46) ^f - 0.94

a. In ppm. b. A positive sign implies deshielding. c. Solvent, cyclohexane. d. Accurate to \pm 0.01 ppm. e. Taken from ref. 2c. Solvent, CCl₄. f. Taken from ref. 2i. Solvent, DCCl₃. g. This study. Solvent, cyclohexane.

Moreover, the signs of the shifts for 1 and 2 do not indicate a general pattern consistent with inverse substituent behaviour. Thus, we believe the results for 1 and 2 offer compelling support for the idea^{2c,3} that hyperconjugation involving the CF bond is indeed largely responsible for the large inverse ¹⁹F SCS of benzylfluorides^{2c,2i} and fluoromethylnaphthalenes^{2f-g}. Now since this electronic interaction provides a mechanism by which substituents in the aryl ring of fluoromethylaromatics can strongly polarize the σ electrons in the 2p_y orbital of fluorine, but not the π electrons in the 2p_z and 2p_x orbitals which are responsible for aryl ¹⁹F SCS¹, it is tempting to speculate that inverse substituent-induced ¹⁹F chemical shifts depend not only on the total charge density on fluorine but also on the symmetry of its distribution. Thus, the direction of ¹⁹F SCS in alkylfluorides may, in some instances, be finely balanced since the relative extent of polarization of the $\sigma(2p_y)$ and $\pi(2p_x and 2p_z)$ electrons will depend significantly on the electronic structure of the bonds in the local vicinity of the fluorine atom.

The full data for 1 and 2, including their syntheses and a ¹³C nmr study, will be presented in a main paper.

References and Notes

1.	(a) W.J.	Hehre, R.W. Taft and R.D. Topsom, Prog. Phys. Org. Chem., 12, 159 (1976) and reference	es
	therein;	(b) W.F. Reynolds and G.K. Hamer, J. Am. Chem. Soc., 98, 7296 (1976) and references	
	therein;	(c) W. Adcock and T.C. Khor, J. Am. Chem. Soc., 100, 7799 (1978) and references ther	ein.

 (a) C.L. Bumgardner, J. Org. Chem., <u>28</u>, 3225 (1963); (b) J.E. Baldwin and D.J. Fenoglio, J.Phys. Chem., <u>70</u>, 227 (1966); (c) C. Beguin, <u>Bull. Soc. Chim. Fr.</u>, 4214 (1967); (d) G.L. Anderson and L.M. Stock, J. <u>Am. Chem. Soc.</u>, <u>91</u>, 6804 (1969); (e) G.H. Wahl, Jr. and M.R. Peterson, Jr., <u>J. Am. Chem. Soc.</u>, <u>92</u>, 7238 (1970); (f) W. Adcock, M.J.S. Dewar, R. Golden and M.A. Zeb, <u>J. Am. Chem. Soc.</u>, <u>97</u>, 2198 (1975); (g) E.A. Dixon, Ph.D. Dissertation, University of Victoria, Victoria, British Columbia, Canada, 1974; (h) R.R. Perkins and R.E. Pincock, <u>Org. Magn. Reson.</u>, <u>8</u>, 165 (1976); (i) J. Bromilow, R.T.C. Brownlee and A.V. Page, <u>Tetrahedron Lett.</u>, 3055 (1976); (j) W. Adcock and T.C. Khor, <u>J. Org. Chem.</u>, <u>42</u>, 218 (1977).

3. W. Adcock, J. Alste, S.Q.A. Rizvi and M. Aurangzeb, J. Am. Chem. Soc., 98, 1701 (1976).

(Received in UK 14 March 1979)